
FEATURE

A Facility for Simulating
Multiprocessors

James M. Butler

Raytheon Company

A. Yavuz Oruc

Rensselaer Polytechnic Institute

P arallel computer systems make possible the fast exe-
cution of a vast set of algorithms that can be handled

P by conventional uniprocessors only with great dif-
ficulty. However, parallel computer systems are much more
complex than uniprocessors, and this complexity causes
many design and implementation problems. One such prob-
lem is the development of working models for evaluating
the behavior and performance of parallel computer systems
under varying conditions. Because these systems are so ex-
pensive to build, the need for such models is great.

Several computation models of parallel computer systems
have been reported. Among these, dataflow graphs, 1,2
PMS diagrams, 3 and Petri nets4 are notable. These
abstract models are especially useful for analyzing the con-
trol of dataflow in multiprocessor computers. They are sup-
ported by software tools such as Dijkstra's P and V
primitives and semaphores5 and Conway's FORK and
JOIN mechanisms. 6 These, and other tools, 7-9 provide
means for scheduling and synchronizing tasks and resolving
conflicts among processors in asynchronous parallel com-
puter systems. On the other hand, abstractions such as
pipeline and array processor models provide formalisms
useful for the study of synchronous parallel computer
systems.
Though analytical models of parallel computer systems

have been available for some time, simulation models of
them have not. Simulation models are particularly impor-
tant for evaluating the performance of asynchronous
parallel computers, the behavior of which is very difficult to
predict with analytical models. Here, we describe the design
and implementation of a simulation model we call Euclid.

An overview of Euclid
Euclid is based on a parallel computer model called a

processing network. 14 It accepts as input from the user four
files containing information about the architecture that is to
be modeled and the algorithm that is to be run on that ar-
chitecture. It has facilities for creating, editing, displaying,
and printing these files as well as runtime facilities for alter-
ing the conditions of the simulation as the simulation pro-
ceeds. It can also provide information and statistics about
the simulation and give, both during and at the conclusion
of the simulation session, the actual computational results
of running the algorithm.

The processing network model. The processing network,
or PN, is defined as a triplet PN = (T, f, P), where T is a
finite set of objects called terminals, P is a finite set of ob-
jects called processors, and f is a mapping from P to the
power set of T denoted P(T). Each processor p is specified
as having a set of maps and/or operations Hp, each
member of which is defined over the set Tp = f(p), which
is a member of the power set P(T). We call the mapping f
the domain map of PN to emphasize that it describes the
domain of terminals for each p e P. Note that the model
does not restrict the user to any one type of terminal-it can
be a memory, an input or output device, or any other com-
ponent that can be tied to a processor.

Let us look at an example of a processing network
specification. Let

T = [tp; I c i < 12
P = piP2 I ci c41

0272-1732/86/1000-0032$01.00 (1986 IEEE32 IEEE MICRO

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

and let the map of P- P(T) be defined as

f(pi) = [tl, t2, t3, t4j
f (P2) = It3, t5, t6, t 71
f(p3) = {t4, t8, t9, t10}
f(p4) = [t7, t9, tll, t12}.

We complete the description of PN by adding a computa-
tional dimension to these specifications. Thus, let

HP, = [hp,i)
such that

hlp1:
hP2:
hP3
hp4:

(3 := tI + t2; t4 := tI + t2,
t5 := t3; t6 := t7,
t8 := t4 ; tlo = tg,
t7 := tll + t12; t9 := tll + tl2-

The above representation of PN completely describes the
activities that take place between PN's processors and ter-
minals. In this simple example, P I and p4 are set to add the
contents of their terminals and send the sums to their other
two terminals, whereas P2 andp3 are set to route the con-
tents of their two terminals to their other two terminals. It is
clear that the user can specify each processor to have other
operations, including conditional statements; hence, each
processor can be as powerful as the user desires.
We should note that the above model does not directly in-

corporate time-an essential ingredient of all processes-
into the activities of the processors. The user can accom-
plish this easily, however, by adding execution-ordering rela-
tions and processor-activity rules to the model. He has
many ways in which he can coordinate the activities of the
processors.
PNs can be divided into two categories. A PN is fully

asynchronous if the execution of the maps or operations of
any one of its processors has no time dependency on the
execution of those of any other of its processors. If other-
wise, the PN is synchronous. Each processor of an asyn-
chronous PN can perform its operations at its own speed
and access its terminals at any time regardless of what the
other processors are doing, as long as there are no conflicts
among processors.
The PN model is an ideal base on which to build a

simulation system because it is general, flexible, and simple.
To make it fully functional in a simulation environment,
however, we must refine its definition.

The terminal entry. In the formal PN definition, a ter-
minal is specified as any device that can be connected to one
or more processors. To develop a functional simulator, we
must narrow this specification somewhat. Therefore, we will
consider a terminal to be a data path rather than a device.
For example, if there is a terminal t connected to processors
i and j, a legal data transfer may take place between pro-
cessors i and j via terminal t. Communication may take
place in only one direction at a time, however, since a ter-
minal may never simultaneously possess more than one
value.

Dead-end terminal. A dead-end terminal is specified as
one that is connected to one and only one processor.
Therefore, it cannot be used as a data path. However, we
will define it to be a local-though external-register for its
host processor. A processor may host a file of several of
these registers for use in complex arithmetic operations.

Memory module. A memory module is defined as a col-
lection of data registers or locations in which each data
register or location has a unique numerical identifier called
an address. The organization of addresses in a memory
module is completely arbitrary. A memory module has one
and only one input/output terminal, which is called its port
terminal. Therefore, one can access only one location per
module at a time. However, one can specify a collection of
memory modules that share the same port terminal. This
collection is called a port-connected set of modules. Since
data transfers to and from these modules are made over the
same port terminal, only one location per port-connected
set can be accessed at a time.

User-supplied components. The four files supplied by the
user are the architecture file, the priority memory access
file, the user-defined instruction set file, and the Multisoft
object code file.
The architcture file contains the hardware description of

the architecture to be simulated; this description is based on
the refined PN model. The architecture file contains the ter-
minal map of each processor specified in the architecture,
the port terminal of each memory module specified in the
architecture, and the address map of each memory module,
which is simply a list of addresses belonging to that module.
The priority access file-also called simply the priority

file-contains information that is not provided by the re-
fined PN model and that can be thought of as firmware
support. This information is of three types. The first is in-
formation about the memory access priority level. This
priority level is used by the simulated system's arbitration
mechanism in the event of memory access conflicts. The
second type of information in the priority file is the instruc-
tion execution rate of each processor. A different rate can
be specified for each processor in the simulated system; each
rate is similar to the clock period of a real processor. Hence,
one can simulate systems having processors with different
clock speeds. The third type of information in the priority
file is the memory access bandwidth of each memory
module. This bandwidth determines the speed with which a
memory module can be accessed; it can be different for
each module in the simulated system. Thus, one can specify
some modules as fast cache memories and others as slower
bulk memories.
The user-defined instruction set file contains the instruc-

tion set of each processor defined in the architecture file. In
terms of the refined PN model, the instruction set is the set
of H maps that defines the set of operations each processor
may perform over its set of terminals. The user-defined in-
struction set file is written in Pascal and linked directly to
the Euclid Simulation System task image. Thus, one can

October 1986 33

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

MULTIPROCESSOR SIMULATION

Figure 1. The Euclid
simulation cycle.

make an instruction as complex as one desires. One can
specify any legal set of Pascal operations, including condi-
tionals and loops.'0 However, we should note that although
Euclid allows looping, it still considers it to be a single in-
struction performed by the calling processor. A user-defined
instruction, or UDI, has access to all system terminals and
can issue memory access requests.
The Multisoft object code file contains the user's pro-

gram, which is written in a pseudo-machine-language called
Multisoft. Euclid supports a full object code editor for
creating and editing programs.
Once the user creates the four input files and links the

UDI file to the task image, he must set several presimulation
operation modes. Although these modes have default
values, the user should set them according to his needs or to
certain other conditions. These modes set the memory or-
ganization; the type of simulation-free run, single step, or
checkpoint; the scheme for resolving memory access con-
flicts; and the format for displaying the simulation output.
A detailed discussion of these modes is provided by
Butler.11
Once the user specifies the input files, sets the operational

modes, and prepares the memory system as he desires, he
can start the simulation by doing little more than issuing a
command to that effect. A simulation run can terminate in
three ways-in the normal completion of the test algorithm,
in an abort caused by a user-issued cycle interrupt, and
upon the occurrence of a simulation time error (that is, a
runtime error). Most runtime errors stem from syntax errors
in the Multisoft instructions. Others arise from PN-model-
related problems such as a terminal being written to by
more than one source, a nonexistent address being
specified, or a processor issuing a memory access request to

UD Ne'
__

eft.MV.jeod oc. le I ,,ste sR..s. ..w....u.

T
*::::..:-V:.......s .

I T
i1

a memory module that has no connection to that processor.
Butler provides a complete list of runtime errors.11
A Euclid simulation run yields two sets of results: the

algorithm results and performance statistics. One can ex-
amine the algorithm results by accessing a memory prepara-
tion facility and using the previously described tools for
printing and displaying the contents of a memory module.
The performance statistics take the form of a report on how
the simulated system behaved during the simulated
execution.

Implementation of Euclid
We should keep in mind that the Euclid simulator runs

on a sequentially organized, uniprocessing computer. There-
fore, the actions of the processors defined in a simulated
system are not taking place concurrently, but sequentially.
Since concurrent processes must not be dependent on one
another in a real distributed system, the sequential ordering
of intracycle processes in a simulated environment can be
arbitrary. The Euclid object code controller is responsible
for sequentially assuming the role of each processor and
executing the necessary instructions. Because the order in
which the processors execute can be arbitrary, the controller,
for convenience, simnulates the processors in ascending pro-
cessor number order (that is, processor 0 executes first, pro-
cessor 1 executes next, and so on). Traffic procedures watch
processes to make sure they are nondependent and monitor
data transfers and flags generated by violations.
The Euclid simulation cycle is shown in Figure 1. The

outer-level procedure that controls the tasks to be per-
formed in each cycle is called the cycle driver. Data to be in-
put to the cycle driver are obtained from the settings of the

T
if

I

IEEE MICRO

* - t |
..

I, ..I.. rM i
P" T . i!

.6aiiiimi"

34

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

operational mode switches and the execution of the setup
block. Throughout simulation, the cycle driver refers to the
architecture file, the priority file, and the Multisoft object
code file and maintains a dialog with the global database.

In the first phase of its activity, the cycle driver calls the
Multisoft object code controller. This controller executes in-
structions for all active processors that are not suspended by
calling the appropriate UDI and Multisoft macro routines.
It issues task execution requests and memory access requests
to the appropriate queues.
The second phase of the cycle driver's activity involves

the granting of task execution requests. The cycle driver
calls on the task execution request queue manager to collect
any requests that have been scheduled on an inactive pro-
cessor. If the manager finds any such requests, it grants the
oldest of them.
The third cycle driver phase involves the granting of

memory access requests. The cycle driver calls on the
memory access request queue manager to collect the re-
quests for each memory module or each port-connected set
of modules. The manager grants the oldest of the highest-
priority requests. In the event of an access conflict, it in-
vokes arbitration procedures. Any processor that has
outstanding memory access requests at the end of this phase
is suspended and will not be allowed to execute an instruc-
tion in the first phase of the next cycle.
The final phase of the cycle driver's activity involves up-

dating statistical data, checking the error flags, executing
the cycle interrupt handler, if necessary, and checking for
program halt conditions.

File structure and organization. Because the amount of
data needed to describe the simulated system can be quite
large, it is maintained in the form of disk files. An upper
limit on system parameters, imposed in part by these files,
still remains, however. We should note that the structure of
the architecture file, in particular, is not organized for op-
timum compactness. Compactness was sacrificed for
simpler and more efficient file maintenance.

The architecture file. This file is an integer file comprising
four sections. The first section is a global set of parameters,
the second contains the processor terminal maps, the third
is a list of the port terminals for the memory modules, and
the fourth contains the memory module address maps. The
first section contains the maximum parameter values that
were in effect on the version of Euclid under which the file
was created. They are included in the file because the file
size depends on these values. Their inclusion allows ex-
panded versions of Euclid to read files that were created on
smaller versions. Modules are separated with negative num-
ber delimiters. For example, the address list for module i is
preceded by a - i.

Table I shows the structure of a typical architecture file.
The maximum values for system parameters are shown in
parentheses for the first five cells. Unused cells contain
zeroes.

The priority memory access file. The priority file is also a
file of integers and, like the architecture file, begins with
some maximum parameter values (Table 2). The size of this
file depends on the maximum number of processors and
memory modules that were in the simulation when the file

October 1986

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

MULTIPROCESSOR SIMULATION

was created. Note that in this file cells 2 and 3, which show
the number of defined processors and modules, are not
used just for displaying and printing the file. If these num-
bers do not correspond with those in the architecture file,
the architecture file data are used in the simulation instead.
The only rule that applies here is that the number of pro-
cessors specified in cell 2 of the priority file must be equal to
or greater than the number specified in cell 6 of the ar-
chitecture file.
Note that Table 2 shows the priority file structure for the

parameters in cells 0 and 1.

Multisoft object code file. The object code file is a file of
integers. Its structure is defined by the Multisoft object code
instruction syntax and by the Multisoft programmer. The
size of this file is limited to 32,768 addresses numbered
from 0 to 32767.

The memory file. This file serves as the memory system
for the simulated hardware. It is a file of n real numbers,
where n is the total number of addresses in the system. It is
aligned with the address maps of the architecture file,
although the module delimiters are removed. Let us ex-
amine how this alignment works. Suppose that module 1
has 100 locations and address x appears as the fifth address
in the address map of module 2. Data written to location x
will be stored in the 105th cell of the memory file, which
will be memory file location 104 since the numbering begins
at zero. When a memory read or write is to be performed,
the address maps must be consulted so the correct memory
file offset can be found.

The global database. Euclid maintains a database that is
global to all its functions and procedures. It maintains it in
real memory, not in disk files. The database comprises
various control structures, request queues, and statistical
data structures that are needed during simulation. We need
to examine these structures to understand how the Euclid
simulation machine operates.

Simulation control structures. One of the most important
control structures is the processor activity vector Pro_Ac-
tive (i), where I c i c p, and where p is the maximum
number of processors. The array elements are defined as
follows: If processor i is inactive and, therefore, ready to
accept a new task, Pro-Active (i) = -1. If processor i is ac-
tive and not suspended, Pro-Active (i) = 0. If processor i
is active but suspended due to n outstanding memory access
requests, Pro-Active (i) = n.
When a task is scheduled onto processor i, Pro-Active (i)

is set to 0. When processor i is released, it is set back to - 1.
Each time a memory access request is issued by processor i,
Pro-Active (i) is incremented. Each time such a request is
granted, it is decremented. The object code controller is
only allowed to execute an instruction for processor i if
Pro-Active(i) = 0.
Another important control structure is the multiple pro-

gram counter MPC (i). It is an integer vector and serves as

the program counter for each of the processors. When a
task is scheduled onto processor i, MPC (i) is set equal to
the address of the task block header. When the processor is
released, MPC(i) is cleared to zero. The object code con-
troller uses this vector to read the proper instruction for
each processor and update it as needed.
The processor frequency array is used to control the num-

ber of cycles required to execute an instruction. It is
denoted Pfreq(i,j), where I ci s p and I s j s 2. The
Pfreq (i, 1) vector is loaded with the instruction execution
rates obtained from the priority file before simulation. The
corresponding elements of the Pfreq(i,2) vector are used as
counters that start at one. When the object code controller
attempts to execute an instruction for processor i, it checks
this array. If Pfreq(i,2) = Pfreq(i, 1), the instruction exe-
cutes and Pfreq(i,2) is reset to one. If, however, Pfreq(i,2)
< Pfreq(i, 1), Pfreq(i,2) is incremented and the instruction
does not execute. Thus, if the instruction execution rate of
processor i is n, then n - 1 cycles will pass before the in-
struction finally executes in the nth cycle.
The memory frequency array performs an analogous

function for the memory access granting process. It is
specified as Mfreq(i,j), where 1 c i c m, m being the max-
imum number of memory modules, and where 1 c j s 2,
as before.

File synopsis data. Maintaining so much of the simulated
data in disk files has one marked disadvantage-disk
references are very slow and add up to large amounts of
time over long simulation runs. To improve its performance
in this respect, Euclid extracts much of the smaller or often
used data from the disk files at the time the files are opened
and stores that data in the database. In fact, it completely
reads the priority file when it is opened and immediately
closed. It stores the priority level of each processor i in
PmaVec(i), and the processor and memory speed figures in
Pfreq and Mfreq.

Euclid cannot do this with the architecture file because of
that file's size, but it can do other things to improve its per-
formance in respect to the architecture file. It assigns the
maximum number of terminals used, the number of
specified processors, and the number of specified memory
modules to integers nt, np, and nm, respectively. It loads
the list of memory module port terminals into the vector
Mport(Q), where 1 c i c m and where m is the maximum
number of memory modules.

Euclid also uses an array called Tdef. This array is a
Boolean vector. Euclid searches the terminal maps of all
processors and memory modules for the purpose of setting
Tdef(i) to TRUE if it finds that a terminal i exists. The
result of this process is a list of all the terminals used in the
architecture.
The last data structure derived from the architecture file

is the memory parameters array MernPar(i,j), where I c i
s m, as before, and I c j c 5. Table 3 explains the mean-
ing of the five vectors. With the statistical data about the
memory system that is given in this array, Euclid can search
for memory file offset values much more efficiently. If the

IEEE MICRO36

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

memory organization is random, it will have to search the
architecture file, but since the address maps are arranged
into ascending order upon their entry, it can use the
MemnPar(i, 1) vector to skip quickly to the next module as
soon as it has discounted a module from the search.

Statistical data structures. The processor statistics are
compiled into a simple array Pro-Stat(i,j) where I < i c
p, as before, and I c j c 2. Pro_Stat(i,l) is a count of the
number of cycles during which processor i is active;
therefore, it is incremented at the end of each cycle in which
Pro-Active(i) 2 0. Pro_Stat(i,2) is a count of the number
of cycles during which processor i is used, i.e., is active and
not suspended. This count is incremented at the end of each
cycle in which Pro-Active(i) = 0. From these two vectors
and the total cycle counter CYCLE, Euclid can easily
calculate the performance statistics we call Activity, Utiliza-
tion, Suspension, Task Run, and Task Delay. It calculates
the total number of operations of processor i by dividing
Pfreq(i, 1) into Pro_Stat(i,2), since processor i requires
Pfreq(i, 1) cycles to complete one instruction.
Memory access statistics are accumulated in an array

MemnStat(O). Each time memory module i grants an access
request, MemnStat(i) is incremented. Terminal traffic
statistics are handled in a similar manner: Ter-Stat(i) is in-
cremented once for each cycle in which terminal i is read
from or written to. Note that if terminal i is read by several
elements in a given cycle, Ter-Stat(i) is still incremented
only once.

The task execution request queue. The queueing system
for task execution requests consists of two arrays and a
queue length pointer. The pointer is an integer called
PQLength that simply keeps track of the queue length.
The arrays are aligned and are called PQ_Start and
PQLocation. PQ_Start(i) denotes the task header address
of the ith task execution request. PQLocation is an array
of Boolean vectors that serves as the compatibility mask
C-MASK for each request. By scanning across the vector j
in PQLocation(ij) for values of TRUE, Euclid determines
the processors that request i can be scheduled onto.

In each cycle and for each inactive processor, Euclid
searches the queue, beginning with the oldest entries, for a
task execution request that can be scheduled onto such a
processor. If it finds one and that entry is the kth request in
the queue, it loads the program counter for the processor
with PQStart(k), removes PQ Start and PQLocation
from the queue, and updates the queue while decrementing
PQLength.

The memory access queue. A processor makes a memory
access request using a request record. This record contains
the requesting processor's number, the cycle in which the re-
quest was issued, the target terminal of the data transfer,
and a Boolean variable which is TRUE if the access type is
READ and FALSE if the access type is WRITE. The
memory request queue can be considered a slotted queue
because each memory module is assigned its own slot.

Therefore, the queue can be considered an array of request
records MQ(i,j), where i is the request number and j is the
memory module slot number. A record called MQAlength (j)
tracks the queue slot length for memory module j.
When a processor makes a request, Euclid determines

from the address the memory module the location belongs
to. It then places the request at the end of the appropriate
queue slot and increments the appropriate MQ_Length ele-
ment. One request per cycle may be granted for each
module or port-connected set of modules. Whether a re-
quest is granted or not depends on the priority level of the
requesting processor and the conflict resolution scheme
chosen by the user.

The terminal structure. Terminal entities are actually vec-
tors of real numbers T(Q), where I c i c t and where t is
the maximum number of terminals. There are also two sup-
porting Boolean vectors, T-Read(i) and T-Write(i). At the
beginning of each cycle, they are both cleared to FALSE.
Whenever terminal I is read from, T-Read(O) is set to
TRUE. Likewise, whenever terminal I is written to,
T-Write(Q) is set to TRUE. This allows Euclid to flag illegal
data transfer attempts such as multiple writes to a terminal.
Data transfers such as memory access grants performed

by Euclid automatically set these vectors and increment the
statistical data vector. Data transfers and mathematical
operations performed with UDIs do not do this automati-
cally. A pair of procedures is provided to ensure the integri-
ty of the simulation run and the performance statistics. For
example, if a particular UDI adds the data on terminals 4
and 5 and then writes the sum to terminal 8, the UDI will
appear as

T(8) : = T(4) + T(5); TR(4); TR(5); TW(8);

However, one may wish to allow an operation such as T(4)
: = T(4) + T(5). This violates a traffic rule that states that a
terminal may not be read from and written to in the same
cycle. However, for a working register that is local to a pro-
cessor, for example, it may be convenient and nondestruc-
tive to allow this operation, provided the user is aware that

October 1986 37

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

MULTEPROCESSOR SIMULATnON

an exception is being made. To prevent Euclid from flagging
this situation as an error, the UDI should be written as

T(4): = T(4) + T(5); TR(5); TW(4).

The rules of dataflow. Euclid follows a number of
operating rules to ensure the integrity of a simulation run.
Some are imposed by the refined PN model, and others
arise from various concerns about dependency and concur-
rency. These rules are listed below:

(1) A terminal may not be written to more than once in a
cycle. Such writing to would imply that the terminal can be
multiply defined, which it cannot.

(2) A terminal may not be both read from and written to
in the same cycle. Since the two possible sequential order-
ings of these events can produce different results, concur-
rency is not possible.

(3) A processor is allowed to execute instructions involv-
ing terminals only if all of those terminals appear in the ter-
minal map of that processor. A processor is not allowed ac-
cess to terminals that are not in its terminal map.

(4) A processor is allowed to issue memory access re-
quests only for those memory modules whose port terminals
appear in the terminal map of that processor. This is a con-
sequence of Rule 3.

(5) A memory access request issued by a processor must
specify a target terminal that appears in the terminal map of
that processor. This is also a consequence of Rule 3.

(6) A memory module is allowed to grant only one
memory access request in a given cycle. Since a memory
module has only one port terminal, this rule is a conse-
quence of Rule 1.

(7) A port-connected set of memory modules is allowed
to grant only one memory access request for the entire set in
a given cycle. This is also a consequence of Rule 1.

Maximum system parameters and limitations. The Euclid
simulator, like any system, has limitations. Most of them
are imposed by the computer on which it runs. Euclid was
designed for use on small office systems such as the IBM
PC and the DEC Professional 350. But since Euclid
simulates high-performance multiprocessors and distributed
computers, certain upper bounds on the simulations can be

expected to present themselves. The limitations we will
discuss concern the IBM PC implementation of Euclid.

Program constants and memory usage. The maximum
values of the simulation system parameters are referenced
throughout the Euclid package as constants declared in the
global database. Table 4 shows these constants and the
values that are in effect for them in the current version of
IBM PC Euclid. The IBM PC under MS-DOS allows the
task image to occupy a 64K-byte region of memory and the
globally declared database to occupy a separate 64K-byte
region. The constants shown in Table 4 cause approximately
54K bytes of data space to be occupied. I I

Another restriction is created by the file handling pro-
cedures. Since the addresses of the input files are integer
data types, these files are limited to 32,768 addresses num-
bered 0 to 32767. This limitation applies chiefly to the
memory system. The total number of allowed addresses
must not overflow the architecture file. This is one reason
why so much attention is paid to port-connected modules.
If large, single memory modules are needed, several can be
port-connected to fit the requirement. The trade-off is that
the number of definable separate modules decreases.

The UDIfile size. The UDI file size, UDISET.PAS, must
be linked into the Euclid task image. Thus, size considera-
tions are of interest. Of the 64K bytes allocated to the task
image, the current version of Euclid uses only about 34K
bytes after overlaying. This leaves a contiguous block of
about 30K bytes available for the UDI file, which should
probably be enough for any application. If it is not,
however, the Turbo Pascal compiler which must be resident
on the system running Euclid allows procedures that are
local to a procedure to be overlaid. In other words, the UDI
set is a single procedure that can be up to about 30K bytes
long. But, by declaring a collection of nondependent pro-
cedures within this UDI procedure as overlaid, Euclid can
accommodate even a file originally much larger than 30K
bytes.
One must consider another factor when dealing with the

UDI file. There is a file called UDIVAR.PAS that may con-
tain global declarations for the UDIs that the user may re-
quire. Such declarations can be counters or any other type
of data that must be preserved across UDI calls. These
declarations, if they are to be made, will have space
allocated in the 64K-byte data region. One must exercise
caution to ensure that no conflicting declarations are made
and that allocation of these variables does not try to exceed
the 64K-byte limit.

Multisoft programming language
Multisoft was developed specifically for the Euclid

simulator. It comprises elements borrowed from several pro-
gramming environments. It includes generic instructions for
controlling program flow, such as LOAD, INCREMENT,
JUMP, and various conditional branching instructions.
Also of interest are its READ and WRITE instructions,

IEEE MICRO38

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

which issue memory access requests. It provides a class of
instructions for initiating processes on various processors. A
program written in Multisoft is actually a collection of these
processes, which are separately defined; henceforth, we will
refer to these processes as tasks. The instructions for initiat-
ing processes include the SPAWN, SUBTASK, and
PARAFOR constructs, each of which will be defined below.

User-defined instruction sets are also supported by
Multisoft. An interface exists that calls the UDI procedure
when a UDI reference is made during simulator execution.
Since in most cases the bulk of the computing power of a
simulated system will exist in the UDIs, the macro instruc-
tion set supported by Multisoft has been kept to a mini-
mum. Placing the burden on the UDI set also serves the
purpose of maintaining generality within the Euclid
environment.

The setup block. The setup block is used to specify which
task or tasks should be initially scheduled and onto which
processors they should be scheduled. During program exe-
cution, tasks may schedule other tasks, but at least one pro-
cessor must be initially activated. The setup block provides
a list of operand pairs, each of which specifies a processor
and the starting address of its initial task. Valid elements of
this list are put into effect immediately, with the following
exception: If the list contains one or more tasks that specify
the same processor, the first of these is scheduled and the re-
mainder are queued. The assembly code syntax for the setup
block is

SBH
P1 TI
P2 T2

; Setup block header
; 1st processor/task schedule pair
; 2nd processor/task schedule pair

we will discuss in more detail what these locations are used
for.

Task scheduling instructions. There are three instructions
that can be used to schedule tasks for execution. Each of
these is described below.

The SPAWN instruction. A task may spawn other tasks
by placing requests on the task execution queue. It does this
by using the SPAWN instruction. Each request within the
SPAWN instruction has two parts. The first is the address
of the header block of the task to be spawned. The second
is a compatibility mask. This mask designates the set of pro-
cessors upon which the spawned task may execute. The re-
quest will wait in the queue until one of these processors is
available.
The compatibility mask comprises 16-bit integers; each

bit corresponds to a processor. In a Euclid version in which
the maximum number of allowed processors is set to 16, the
mask requires only one integer. But if, for example, the ver-
sion allows 64 processors, the mask must be four integers
long even if a particular architecture uses only 16 pro-
cessors. The integers that comprise the mask are designated
MI, M2, . Mn. The least significant bit (LSB) of MI
corresponds to processor 1, the most significant bit (MSB)
of Ml to processor 16, the LSB of M2 to processor 17, the
MSB of M2 to processor 32, and so on. In the descriptions
of syntax, the entire mask is referred to as the C-MASK.
The assembly code syntax for the SPAWN instruction is

SPAWN
OPIt OPim
OP2t OP2m

; SPAWN instruction
; Request 1: task address, C-MASK
; Request 2: task address, C-MASK

Pn Tn ; nth processor/task schedule pair
SBT ; Setup block terminator

Task structure. To be properly structured, a task must
have two components: the header block and the task body.
The header block performs certain housekeeping functions
for Euclid as well as three optional subinstructions. The
body of the task contains Multisoft instructions and/or
UDIs. There must be at least one HALT instruction in the
body of every task, but it does not necessarily have to be the
last instruction.

The task header block. A macro called HEADER is
always the first action a task performs. It does so automati-
cally, and HEADER is considered to be the first operation
of the task. Thus, the first instruction specified by the pro-
grammer after the task header block will be the second
operation performed by the task.

For each task, five locations in memory must be allocated
to Euclid so it can store status information about the task.
These addresses are known as the A-block addresses and are
referred to as Al, A2, A3, A4, and A5. In the next section,

OPnt OPnmr; Request n: task address, C-MASK
VIT ; Variable instruction terminator

The SUBTASK instruction. This instruction allows a task
to jump to another task (i.e., to a subtask) on the same pro-
cessor and return when the subtask is completed. It is
similar to a traditional subroutine call except that no explicit
parameter passing takes place and the block of subroutine
code must always be a completely defined task. There is no
Multisoft-imposed bound on the level of subtask nesting.
The assembly code syntax for the SUBTASK instruction is

SUBTASK OPI ; Task header address

The PARALLEL FOR instruction. The PARALLEL
FOR construct is by far the most complex of the task
scheduling instructions. It is similar to a traditional FOR
loop, with one major difference. With a FOR loop that has
k iterations, the same block of code is executed sequentially
k times. The PARALLEL FOR construct assumes that the
iterations of the block are nondependent and therefore can
be executed concurrently on as many as k processors.

In Multisoft, the block of code is a complete task, and
for k iterations, k task execution requests will be issued.

October 1986 39

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

MULTIPROCESSOR SIMULATION

Operands 1, 2, and 3 make up the traditional loop parame-
ters of lower limit, upper limit, and index or incrementer,
and all of these can be memory referenced and/or memory
indexed. Operands 4 and 5 are memory addresses that must
be allocated to the control variable and the index, respec-
tively. Operand 6 is the task header address of the task to be
generated followed by its compatibility mask. The processor
calling the PARALLEL FOR may or may not take part in
the iterations, depending on its C-MASK bit. In either case,
the calling processor will not continue with the next instruc-
tion after the PARALLEL FOR until the last iteration has
completed. PARALLEL FOR calls may not be nested. The
assembly code syntax for the PARALLEL FOR instruction
is

PARAFOR OPI OP2 OP3; Lower, upper limit, index
OP4 OP5 ; CV, index address
OP6 C-MASK ; Task header address,

C-MASK

Branching instructions. These instructions are the
Multisoft versions of conditional and unconditional branch-
ing. In assembly code syntax, the jump target operand n
may appear as

* OPn, a symbol to be resolved by the assembler,
* A(OPn), an absolute jump to the address OPn, or
* R(OPn), a relative jump by offset OPn.

The assembly code syntax for the JUMP instruction is

JUMP OPI ; OPI is the jump target operand

The conditional branching instructions. There is actually
one conditional branching instruction with six variations.
The instruction reads as follows: If OPI * OP2, then
branch to OP3, where * represents one of the six relational
operators shown in Table 5 and OP3 is the jump target
operand. OPI and OP2 are allowed to be memory refer-
enced and/or memory indexed. The assembly code syntax
for the conditional branching instruction is

BRANCH OPI OP2 OP3 ; BEQ, BNE, BLT, BGT, BLE,
BGE

Miscellaneous Multisoft instructions. Multisoft also sup-
ports instructions that, when combined with the branching
instructions described above, make possible the convenient
specification of loops. Other instructions allow read and
write accesses to the memory modules. A short description
of these is given below. A more detailed treatment of these
instructions and the ones discussed earlier can be found in
Butler. I I

The LOAD instruction. This instruction allows the direct
loading of a memory location specified by OP2 with a value
specified by OPI. The assembly code syntax for the LOAD
instruction is

LOAD OPI OP2; Load OPI onto OP2

The INCREMENT instruction. This instruction allows
the incrementing of a memory location specified by OP2 by

a value specified by OP I. The assembly code syntax for the
INCREMENT instruction is

INC OPI OP2; Increment OP2 by OPI

The READ and WRITE instructions. These instructions
allow access to the memory module contents by issuing
memory access requests. The syntax for the READ instruc-
tion is shown below; the WRITE syntax is identical except
that READ is replaced by WRITE:

READ OPI OP2; Read address OP2 to terminal OPI

The multiple access construct. In many cases, it may be
necessary or convenient to issue several READ and WRITE
requests in a single instruction. The multiple access con-
struct makes this possible. In the following syntax, the word
"access" refers to a valid READ or WRITE instruction that
follows the above syntax for those instructions:

MAH
access-I
access-2

; Multiple access header
; READ/WRITE instruction I
; READ/WRITE instruction 2

access-n ; READ/WRITE instruction n
VIT ; Variable instruction terminator

UDI and no-op syntax. The set of user-defined instruc-
tions must be numbered in the range I to 512. Any instruc-
tion within this range is assumed to be a UDI and not a
Multisoft macro instruction. The assembly code syntax for
UDI number n is UDI n. If Euclid reads a zero while exe-
cuting a Multisoft program, the program counter is in-
cremented and the zero is treated as a NOP (no operation).

Simulation example: jigsaw puzzles
Here we will examine, as a sample simulation problem

for Euclid, a method for solving jigsaw puzzles. Other
simulation examples can be found in Butler and Oruc. 12
This example was inspired by the work of Green and
Juels, 13 in which a clever analogy was made between an un-
cooperative group of children and asynchronous mul-
tiprocessing. The jigsaw puzzle makes a good distributed
performance test because of the level of list searching, com-
munications, and decision making involved. It also lends
itself quite well to asynchronous solution techniques.
The jigsaw puzzle is modeled as a collection of square

tiles whose orientations are known. Each of the four edges

IEEE MICRO40

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

of a tile has an integer value assigned to it. If an edge of a
tile is also part of a boundary edge of the puzzle, it has a
value of zero. Any internal edge of a tile has a positive value
that is equal to that of the adjacent edge of the matching
tile. Only one solution to the puzzle exists.

Solution philosophy. The solution used was a combina-
tion of techniques that mimic humans and worker ants.
Two stores of puzzle tiles exist: the input store and the out-
put store. For the input store, an ant colony provides the
best analogy. Assume that there is a pile of food crumbs
large enough so each ant can pick from it without conflict.
This does not guarantee that no conflicts will occur, since
there is no "foreman." Likewise, processors will choose
tiles from the input store at random, in order to inspect
them. Euclid will resolve conflicts in a random fashion,
deciding who will obtain a tile and who will have to look
elsewhere.
On the output side, processors will have the ability to in-

spect the solution space simultaneously. To make the prob-
lem more interesting, however, a limit will be set on the
number of processors that are allowed to simultaneously
place tiles in the output (or solution) space. We impose this
rule to emulate the situation that would prevail if people
were working on the puzzle-many people could view and
inspect the puzzle but fewer could gain physical access to it
to place their tiles.
The requirement that a tile will have to meet before it can

be placed in the output store is that it form part of the
boundary edge of the puzzle or that it mate with at least one
tile already in the output store.

Architectural model. The simulated distributed architec-
ture for jigsaw puzzle solving is shown in Figure 2. There
are n identical processing elements, where n will take on
values of 1, 2, 4, 8, and 16. The input store is a collection of
n memory modules that are accessible by each of the pro-
cessors. The tiles are initially distributed evenly over these
modules. The first address of each module is a count of the
tiles resident in that module.
The output store is a collection of memory modules

which are n in number but are limited to four. Again, all
processors have access to each module and the first location
of each module is the module tile count. This bound im-
poses the rule of limited simultaneous access to the output
store.

Each processor has address space allocated to it in the
general-purpose memory module. This space is used for
loop counters, temporary storage, and so on, and it is an
additional source of memory contention. Memory module
locks serve as semaphores that allow processors to control
access rights to the input and output memory modules. The
rules are as follows: If an input module is locked by a pro-
cessor, no other processor may have read or write access to
the module. If an output module is locked by a processor,
other processors may have read access only. This is as if to
say that while one person is placing a tile in the puzzle,
others may still inspect the area near this placement.

Figure 2. An architecture for solving jigsaw puzzles.

Figure 3. Number of cycles vs. number of processors.

The algorithm. The distributed algorithm that implements
the puzzle solution was written in Multisoft, the distributed
simulation language supported by Euclid. All the processors
execute the same algorithm and all are defined as having the
same instruction set. The only difference among them is in
their mapping of general-purpose memory and local
registers. An understanding of the algorithm can best be
derived from the English version in the box on page 43.

Results. Figures 3 to 5 illustrate the performance charac-
teristics of the puzzle-solving distributed architecture as it

October 1986

P i: Processor i where I < i c n
M/I i: Input memory module i where c i c n
M/O i: Output memory module i where I c i c min{n,4}
M/G P: General-purpose memory module

Number of cycles

800,000
774,179

336,240 - -----

144,406
99,587
97,570

0
Number of
processors1 2 4 8 16

41

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

MULTIPROCESSOR SIMULATION

up factor

Simulation results /

1 =00 Nu

Speedi

16.000 -

7.935
7.774 -

5.361 -.

2.302 --

1.000 -1
O _ b

Expected optimum

I I _

4 8 16

Figure 4. Speedup (referenced to the single-processor
case).

Figure 5. Normalized speedup (referenced to the single-
processor case).

Figure 6. Processor utilization vs. number of processors.

1 2

executes the distributed algorithm for a 16 x 16-tile puzzle.
Figure 3 shows that the single-processor case required
774,179 clock cycles from the simulated system. It is clear
from this figure that additional processing hardware pro-
vides notable improvements in performance until the 8- and
16-processor cases are reached. Performance actually de-
clined somewhat with 16 processors.
The speedup resulting from additional processors is

shown in Figure 4 and reveals an unexpected anomaly. The
points on this curve are referenced to the single-processor
case. The dashed curve shows what one might expect to be
the upper bound on speedup-a speedup of n for the
n-processor case. However, the two- and four-processor
cases actually provide an increase in performance that ex-
ceeds this expected optimum. The eight-processor case pro-
duces approximately the expected optimum, whereas the
16-processor case produces less than half of the expected
optimum.
We can explain the better-than-expected performance by

intuitively examining the algorithm. In the single-processor
case and during the early part of the simulation, the chances
that a tile will be placed in the output module are very
small, since only 24.2 percent of the tiles have puzzle-
boundary edges and all the other tiles must mate with a tile
already in the output store. Thus, the accumulation of tiles
starts very slowly and eventually speeds up. When a second
processor is added, the early buildup of tiles proceeds at
about twice the rate. The increase in performance occurs
because the rate of growth of the probability that a tile will
be successfully placed increases proportionally with the tile
buildup. This process dynamic introduces the nonlinear
shift in performance by causing the probability of success to
rise faster in the earlier stages of execution than in the later
stages.

Figure 5 shows the speedup profile after we normalized
each point by dividing the speedup factors by the
corresponding number of processors. The normalized ex-
pected optimum is, therefore, flat at 1.000. This curve
shows the point at which one can expect to get the best per-
formance per processor dollar.

Figure 4 indicates that of the cases which were simulated,
the eight-processor one realized the fastest execution time.
Figure 5 shows that for a given level of hardware, the four-
processor case performed the best. These results provide the
information one needs to make an intelligent decision. If
the cost of hardware is of less concern than the speed of
execution, eight processors may be the best choice. On the
other hand, if the best marriage of system economy and
performance is desired, a four-processor architecture may
be the better way to go.

Figure 6 shows the processor utilization profile for the
five cases. Utilization is defined as the percentage of active
time during which a processor is not suspended waiting for
memory access grants. This curve helps explain the decline
in performance exhibited by the two largest architectures. In
these two cases, the advantage of greater task distribution
was offset by the very low utilization figures. Key sources of
memory contention in this study were the general-purpose

IEEE MICRO

Normalized speedup factor

2.000
Simulation results

\ Expected optimum (normalized)
1.340 - ------------

1.151- = \
1.000 --

0.486

0 Numberof
1 2 4 8 16 processors

Processor utilization (%)

100.000
87.495

-

80.829 -

67.572 --------------

37.339 - ------------------ _-

17.795 --------------------------

0~ Numberof
1 2 4 8 16 processors

//

Number of
processorsl-T

42

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

memory module, locks placed on input and output
modules, and, in the 8- and 16-processor cases, the self-
imposed restriction of the number of output slots to four.
The latter was probably not a dominating factor, however,
since output modules are locked only while a tile is being
placed in them and are not locked during the searching
process.

Final observations. The jigsaw puzzle example helps point
out the value of simulation. Prior to executing our simula-
tion runs, we made several predictions about performance
trends and execution times. Most of these estimates proved
to be off, and some were completely inaccurate. We might
have come up with better predictions if we had done a more
extensive mathematical analysis. Such an analysis, however,
would have had to include a great number of seemingly
negligible factors, ones that do not remain negligible when
processor interaction and contention increase. Such an
analysis was beyond our resources and, moreover, such an
analysis usually leaves too many uncertainties and unan-
swered questions. We can answer most such questions by
direct observation-through simulation.

T-| he implementation and development of a system
such as Euclid can never be a static proposition-it

T can never be called complete. Its purpose is to aid
computer designers in developing high-performance systems
or to help researchers in testing predictions about system
behavior and performance. If a simulation system is to re-
main useful, it must always be able to deal with uncertainty.
(Once a designer or researcher learns enough about a
design's characteristics and performance, his need for
simulation decreases.) The current configuration of Euclid
stands very near to what could be called a plateau of
usefulness. It works well and offers its users many services.
However, it can still be improved-it can use more software
to support its interaction with the user, for example. A high-
level compiler equipped with parallel constructs such as
those in Parallel Pascal 10 could be very helpful for specify-
ing programs to Euclid.

There could be two basic problems in developing such a
compiler. First, unless very carefully written, it would tend
to encroach upon the generality and flexibility of the current
version of Multisoft. Second, it would have difficulties
working with Euclid's memory system, since that system is
completely definable by the user and thus can be constantly
changing.
One possible solution to both of these problems could be

to create an interactive compiler. The user could be called
upon to guide the compilation process to ensure that the
resulting code conformed to the desired specifications. Even
if the amount of interaction seemed tedious to the user, it
would still be a vast improvement over hand-translating a
large set of complex tasks into object code. ,

October 1986 43

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

MULTIPROCESSOR SIMULATION

References
1. J.B. Dennis and D.P. Misunas, "A Preliminary

Data Flow Architecture for a Basic Data Flow Pro-
cessor," Proc. 2nd Symp. on Computer Architecture,
1978, pp. 144-151.

2. D.A. Adams, "A Model for Parallel Computations,
Parallel Processor Systems," in Technologies, andAp-
plications, L.C. Hobbs, ed., Spartan Books, New York,
1970, pp. 311-333.

3. D.P. Siewiorek, Computer Structures: Principles and
Examples, McGraw-Hill, New York, 1982.

4. J.L. Peterson, "Petri Nets," Computing Surveys, Sept.
1977, pp. 223-252.

5. E.W. Dijkstra, "Cooperating Sequential Processes," in
Programming Languages, F. Genuys, ed., Academic
Press, London, 1968, pp. 43-112.

6. M. Conway, "A Multiprocessor System Design,"
AFIPS Conf. Proc., Vol. 24, 1963 FJCC, pp. 139-146.

7. P. Brinch Hansen, Operating System Principles,
Prentice-Hall, Englewood Cliffs, N.J., 1973.

8. A. Silberschatz, "Communication and Synchronization
in Distributed Systems," IEEE Trans. Software Eng.,
Vol. SE-5, No. 6, Nov. 1979, pp. 542-546.

9. G.R. Andrews and F.B. Schneider, "Concepts and
Notations for Concurrent Programming," Computing
Surveys, Mar. 1983, pp. 3-42.

10. A.P. Reeves, "Parallel Pascal: An Extended Pascal for
Parallel Computers, " J. Parallel and Distributed Com-
puting, 1984, pp. 64-80.

11. J.M. Butler, "Euclid: An Architectural Simulator for
Distributed Computers and Multiprocessors," MSc
thesis, Rensselaer Polytechnic Institute, Troy, N.Y.,
Dec. 1985.

12. J.M. Butler and A.Y. Oruc, "Euclid: An Architectural
Simulator for Multiprocessors," Proc. 6th Int'l Conf.
on Distributed Computer Systems, Boston, 1986, pp.

280-288.
13. P.E. Green and R.J. Juels, "The Jigsaw Puzzle: A

Distributed Performance Test," Proc. 6th Int'l Conf.
on Distributed Computer Systems, Boston, 1986, pp.

289-295.
14. A.Y. Oruc, "Analysis and Design of Processing Net-

works," tech. report, ECSE Dept., Rensselaer
Polytechnic Institute, Troy, N.Y., 1984.

James M. Butler is a computer systems engineer in the ATE
Design Group at Raytheon MSD in Lowell, Massachusetts.
His current interests include multiprocessing, methodologies
of distributed data acquisition, and highly parallel digital
systems.

Butler received his MS degree in computer and systems
engineering in 1985 from Rensselaer Polytechnic Institute,
his BS degree in electrical engineering in 1984 from the
University of Lowell, and his AS degree in electronic engi-
neering technology in 1981 from Boston's Wentworth In-
stitute of Technology. He is a member of Tau Alpha Pi, Eta
Kappa Nu, and the Computer Society of the IEEE.

A. Yavuz Oruc has been on the faculty of the Department
of Electrical, Computer, and System Engineering at Rens-
selaer Polytechnic Institute since January 1983. His research
interests include parallel processing and analysis and design
of connection and computation networks for advanced
computer systems.
Oruc received the BSc degree in electrical engineering

from Middle East Technical University, Ankara, Turkey, in
1976; the MSc degree in electronics from the University of
Wales, Cardiff, United Kingdom, in 1978; and the PhD
degree in electrical engineering from Syracuse University,
New York, in 1983. He is a member of the Computer Socie-
ty of the IEEE.

Questions about this article can be directed to Dr. A.
Yavuz Oruc, ECSE Dept., Rensselaer Polytechnic Institute,
Troy, NY 12180.

Reader Interest Survey

Indicate your interest in this article by circling the
appropriate number on the Reader Interest Card.

High 156 Medium 157 Low 158

44
IEEE MICRO-
IEEE MICRO)44

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 13:33 from IEEE Xplore. Restrictions apply.

